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Abstract: We investigate the low-energy effective description of non-geometric compact-

ifications constructed by T-dualizing two or three of the directions of a T 3 with non-

vanishing H-flux. Our approach is to introduce a D3-brane in these geometries and to take

an appropriate decoupling limit. In the case of two T-dualities, we find at low energies a

non-commutative T 2 fibered non-trivially over an S1. In the UV this theory is still decou-

pled from gravity, but is dual to a little string theory with flavor. For the case of three

T-dualities, we do not find a sensible decoupling limit, casting doubt on this geometry as

a low-energy effective notion in critical string theory. However, by studying a topological

toy model in this background, we find a non-associative geometry similar to one found by

Bouwknegt, Hannabuss, and Mathai.
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1. Introduction

Compactifications on non-geometric spaces have emerged as a new potential class of string

theory vacua [1 – 3]. The non-geometric nature of these spaces arises because some of the

transformations that glue the patches together include U-dualities as well as the standard

diffeomorphisms. A useful prototype non-geometric space is found by T-dualizing a three

dimensional torus with a non-vanishing H-flux: T-dualizing on one cycle gives rise to a

Scherk-Schwarz twisted torus [4] which is purely geometric. However, T-dualizing on two

cycles gives rise to a space in which one of the cycles is periodic up to T-duality, which

mixes momentum and winding modes. As such, in this space, geometric notions such as

the metric and the background B-field are only well-defined locally.

After T-dualizing twice, one can contemplate T-dualizing along the third direction of

the T 3. Naively, a T 3 with uniform H-flux is isometric under shifts in three independent

dimensions. However, the Buscher rules for T-duality require that the two-form potential

B be uniform [5, 6], and in order for the three form field strength H to be uniform, the two

form potential must break at least one of the translation isometries. Thus, the standard

Buscher rules do not apply.

– 1 –
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Recently, Shelton, Taylor, and Wecht proposed an interpretation of the third T-dual of

a torus with H-flux as an example of a consistent non-geometric compactification [7]. They

also introduced a nomenclature which we follow: the H, f , Q, and R-spaces correspond to

a T 3 with H-flux T-dualized zero, one, two, and three times, respectively. The Q-space is

perhaps the simplest example of a non-geometric compactification that mixes momentum

and winding modes. If the interpretation of [7] is correct, the R-space is an example of a

space that is more non-geometric than the Q-space.1

Space-time geometry in string theory is an approximate notion which is valid only

when the scale of all the geometric features are much larger than string scale. When the

size of a compact manifold becomes comparable to the string scale, geometric notions break

down due to the non-locality intrinsic to the fact that a string is an extended object. In

order to isolate the novel geometric features from the generic non-locality effects of string

theory, one takes the decoupling limit, α′ → 0, keeping the size of the compact manifold

finite. Geometric notions acquire precise meaning in this limit. However, not all space-time

geometries one obtains in this way are ordinary geometric spaces. More exotic spaces, such

as the non-commutative plane, can arise as decoupling limits of string theory.

One can investigate the geometric features of the Q-space and the R-space along similar

lines. Our strategy is to use the properties of field theories defined on these spaces as a

probe of the geometry. In string theory, this can be implemented by introducing a D3-

brane filling the space and taking the decoupling limit.2 This gives rise to a non-trivial

effective dynamics of open strings ending on a D-brane in a presence of an NSNS B-field

background.

Because of the presence of the B-field, it is natural to expect some connection between

the Q/R-spaces and non-commutative geometry. Indeed, in the case of the Q-space, we find

a familiar non-commutative theory whose UV completion is a little string theory coupled

with flavor. On the other hand, we do not find a clean decoupling limit for a theory defined

on R-space. The R-space does not appear to admit an effective description as a smooth

macroscopic structure decoupled from gravity.

This article is organized as follows. In section 2 we review the supergravity background

giving rise to the H, f , and Q spaces. In section 3, we describe the decoupled theory of

D3-branes in the Q-space and its UV completion. In section 4, we comment on the status

of R-space. In section 5 we discuss a toy model for R-space physics. We end with some

concluding remarks in section 6.

2. Torus with H-flux and its T-duals

In this section, we review the spaces H, f , Q, and R, in the nomenclature of [7]. We

will also review the warped supergravity background of smeared NS5-branes that properly

takes into account the gravitational backreaction of the non-vanishing H-flux.

1These fluxes are also interesting from the “cosmological billiards” perspective, since they correspond to

interesting roots of E10 [8, 9]. We thank Ori Ganor for bring this point to our attention.
2Adding D-branes to various T-duals of H-space was also studied in [10, 11].
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2.1 The H-space

Consider a T 3 with H-flux whose coordinates are given by xi with periodicities Li for

i = 1, 2, 3. When written explicitly, the background B-field breaks at least one of the

infinitesimal translation symmetries:

ds2 = dx2
1 + dx2

2 + dx2
3, B = b x1 dx2 ∧ dx3, H = dB, b =

(2π)2Nα′

L1L2L3
. (2.1)

The H-flux is quantized so that N is an integer. We refer to this space as the H-space

using a notation similar to [7].

2.2 The f -space

T-dualizing along x3 gives rise to a purely metrical background

ds2 = dx2
1 + dx2

2 + (dx̃3 + bx1dx2)
2, (2.2)

with twisted boundary conditions,

x1 ∼ x1 + n1L1, x2 ∼ x2 + n2L2, x̃3 = x̃3 + n3L̃3 − n1bL1x2, L̃3 =
(2π)2α′

L3
.

(2.3)

This space is also known as the nil manifold or the twisted torus and is topologically

distinct from the ordinary torus; for example, it has H1(Z) given by Z × Z × ZN [3, 11].

Following [7] we refer to it as the f -space.

Introducing dimensionless coordinates,

xi = Liyi, (2.4)

the metric and the boundary condition becomes more transparent:

ds2 = L2
1dy2

1 + L2
2dy2 + L2

3(dỹ3 + Ny1dy2), (2.5)

y1 ∼ y1 + n1, y2 ∼ y2 + n2, ỹ3 = ỹ3 + n3 − n1Ny2 . (2.6)

In this form, it is also apparent that N is quantized to be an integer.

2.3 The Q-space

Further T-dualizing along the x2 direction gives the background,

ds2 = dx2
1 +

1

1 + b2x2
1

(dx̃2
2 + dx̃2

3),

B =
bx1

1 + b2x2
1

dx̃2 ∧ dx̃3, (2.7)

eφ−φ0 =
1

√

1 + b2x2
1

.

This space is called the Q-space in [7]. This background is periodic in the x1 direction

up to a T-duality of the x̃2-x̃3 torus, which exchanges momentum and winding modes.

As is clear from (2.7), the metric and B-field are locally defined, but globally are not

manifestly periodic in the x1 direction. As such we take it as a prototypical example of a

“non-geometric” space [1 – 3].
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2.4 The R-space

It is not completely clear that the Q-space can be further T-dualized along the x1 co-

ordinate. Translation along the x1 direction is, after all, not (even locally) an isometry.

Assuming that a T-dual does exist, this space was named the R-space by [7].

2.5 Smeared NS5-brane background

As is, the T 3 with non-vanishing H-flux described in section 2.1 is not a consistent closed

string background since it does not take into account the gravitational backreaction of

the H-flux. One convenient way to build a consistent background is to start with the

NS5-brane background (extended along the 56789 directions),

ds2 = −dt2 + dx2
5 + . . . + dx2

9 + f(r)(dx2
1 + dx2

2 + dx2
3 + dx2

4),

H = ∗(dt ∧ dx5 ∧ . . . dx9 ∧ df−1),

eφ = gsf(r)1/2,

f(r) = 1 +
mα′

r2
, (2.8)

which is a magnetic source of the 3-form H-field, and to smear it along three of the four

transverse coordinates so that the supergravity background becomes

ds2 = −dt2 + dx2
5 + . . . + dx2

9 + f(r)(dx2
1 + dx2

2 + dx2
3 + dz2),

H = dB,

B =
(2π)2Nα′

L1L2L3
(x1 − x0

1) dx2 ∧ dx3,

eφ = gsf(z)1/2,

f(z) = f0 −
(2π)2Nα′(|z| + z)

2L1L2L3
. (2.9)

The smeared NS5-branes are located at z = 0. The parameter f0, which we take to be

positive, is otherwise freely adjustable. The parameter x0
1 is just an additive constant for

the x1 coordinate. We have tuned the charges at infinity so that H = 0 for z < 0. The

smeared NS5-brane acts as a domain wall source for a uniform three-form field strength H

in the region z > 0. See figure 1 for an illustration.

This is not the only way to construct a solution to the supergravity equations of motion

with non-vanishing H-flux threading a T 3. This solution, however, is convenient in that

it preserves 16 of the 32 supersymmetries in type IIA or type IIB supergravity. We will

consider T-duals of (2.9) in order to consistently embed the H, f , Q, and R spaces into

type IIA/B supergravity.

3. Decoupled theory of D3-branes in Q-space

In this section, we derive an effective geometry for D3-branes wrapping the Q-space. This

setup is equivalent to starting with a D1-brane wrapping the x1 direction of the H-space

– 4 –
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f(z)

1
(2π)2α′

∫

H = 0 1
(2π)2α′

∫

H = N

z

Figure 1: Profile of the harmonic function f(z).

and T-dualizing along the x2 and x3 directions;3

0 1 2 3 4 5 6 7 8 9

NS5 • ≡ ≡ ≡ • • • • •
D1 • •

(3.1)

This configuration preserves 8 of the 32 supersymmetries of type IIB, as can be seen by

T-dualizing along the x5 and the x6 coordinates, S-dualizing, and counting the number of

relatively transverse coordinates of the branes.

Since the H-space metric (2.9) is manifestly isometric along the x2 and x3 directions,

it is straightforward to T-dualize along these coordinates, giving the background,

ds2 = f(U)dx2
1 +

f(U)

f(U)2 +
(

NL̃2L̃3
α′L1

(x1 − x0
1)

)2 (dx̃2
2 + dx̃2

3),

B23 =
NL̃2L̃3
α′L1

(x1 − x0
1)

f(U)2 +
(

NL̃2L̃3
α′L1

(x1 − x0
1)

)2 ,

f(U) = f0 −
NL̃2L̃3(|U | + U)

2L1
, (3.2)

where

L̃2,3 = (2π)2
α′

L2,3
(3.3)

is the period of the dual coordinates x̃2,3. The transverse coordinate x4 has been scaled as

x4 = α′U (3.4)

so that U parameterizes the vacuum expectation value of a scalar field polarized along the

x4 direction.

3We use a • to denote directions along which a brane is extended and ≡ to denote directions along which

it is smeared.
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In order to take the decoupling limit, we send α′ → 0 keeping the field theory param-

eters L1, L̃2,3 and U fixed. In this limit, the metric and the B-field degenerate; however,

since we are interested in the effective dynamics of decoupled open strings, we should

not be concerned about the scaling of the closed string variables g and B. Instead, we

should consider the open string metric and non-commutativity parameter along the lines

of [12 – 16];

(g + B)−1 = G +
θ

2πα′
. (3.5)

Explicitly, we find

Gij = f(U)







1

1

1







ij

, Θ23 =
2πθ23

L̃2L̃3

= N

(

x1 − x0
1

L1

)

. (3.6)

The dimensionless non-commutativity parameter Θ23 is simply the non-commutativity pa-

rameter 2πθ23 divided by the volume of the torus L̃2L̃3. Rather remarkably, both the open

string metric and the non-commutativity parameters remain finite in the limit.

The manifestation of the non-geometric character of the Q-space in the decoupled

theory is now transparent. Since the non-commutativity parameter Θ23 depends explicitly

on x1, one cannot naively make this coordinate periodic. However, under a discrete shift

x1 → x1 + L1, the dimensionless non-commutativity parameter Θ23 shifts by N . Such a

shift of Θ23 by an integer is an example of Morita equivalence, which acts as an SL(2, Z)

transformation on the parameters of non-commutative torus (using the notation explained

in the appendix of [17]) as follows:

Θ̃ =
c + dΘ

a + bΘ
, Φ̃ = (a + bΘ)2Φ − b(a + bΘ), Σ̃ = (a + bΘ)Σ,

g̃2
YM = (a + bΘ)g2

YM,

(

m̃

Ñ

)

=

(

a b

c d

)(

m

N

)

. (3.7)

Therefore, in the Q-space, the x1 coordinate is only periodic up to a Morita transformation.

Morita equivalence is precisely the structure inherited from T-duality in the decoupling

limit. It is therefore natural to find a compactification that identifies shifts in x1 via

Morita equivalence emerging as a decoupling limit of a compactification that identifies

shifts in x1 via T-duality.

This geometrical structure, which can be viewed as a field of non-commutative tori

fibered over a circle, also appears in the works of [18 – 21]. In our work, we emphasize the

fact that this structure has a physical origin as the decoupled theory of the open string

excitations living on the world volume of a D3-brane embedded into the Q-space.

Although the motivation was somewhat different, most of the features of the decoupled

field theory on D3-branes in the Q-space were first worked out in [22]. One feature, which

did not get emphasized in [22], however, is that the open-string metric (3.6) is warped in

the transverse coordinate U . In fact, there will be a singularity at some finite value of U .

Since a typical string fluctuates by a size of the order of ls, which is much larger than the

– 6 –
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distance to the singularity, which is order l2s , the open string dynamics is strongly influenced

by the presence of the singularity. Hence, it would be premature to assume, for example,

that the low-energy effective theory is precisely N = 4 supersymmetric Yang-Mills theory

non-commutatized by the position dependent Θ given in (3.6). Such a theory would have

an unbroken SO(6) R-symmetry group, which is clearly broken by the warping along the

U direction.

Since there is no physical scale other than the scale of compactification and the non-

commutativity, one can also think of this system as having non-commutativity parameters

that are different for different U(1) subsectors when the gauge group is broken by turning on

the vacuum expectation values for the transverse scalar field along the warped coordinate

U . Models with these features have been considered before [23, 24]. The authors of [24]

referred to these models as “non-abelian geometry.”

In order to infer the correct low-energy effective action for the decoupled theory, one

must analyze the dynamics of open strings in this background in some detail.4 This seems

like a serious technical challenge in light of the fact that the world sheet sigma model

for strings propagating in the background of smeared NS5-branes does not appear to be

exactly solvable.5

3.1 UV completion of the Q-space effective geometry

That there are singularities at a finite distance in moduli-space suggests that the effective

description based on non-commutative field theory is breaking down because of certain

states that were integrated out. In the remainder of this section, we will work out a UV

completion of this theory that resolves the singularity while keeping gravity decoupled.

The singularity of the smeared NS5-brane background is closely related to the sin-

gularity in type I’ theory that one encounters in the heterotic/type I duality [26]. The

mechanism that resolves the singularity is also similar. To see this more explicitly, it is

useful to embed the 1+1 dimensional effective dynamics of D1-branes in the configura-

tion (3.1) as a dimensional reduction of 3+1 dimensional system oriented as follows:

Step I:

0 1 2 3 4 5 6 7 8 9

NS5 • ≡ ≡ ≡ • • • • •
D3 • • • •

(3.8)

The coordinates x5 and x6 are taken to be compact with period L5,6, which will

remain finite in the scaling limit. (L5,6 can be taken to be small compared to other

scales of the problem at the very end.) In order for this background to yield the

Q-space after two T-dualities, we scale the parameters of the compactification as

follows:6

4The authors of [24] proposed a generic non-abelian ∗-product, but we do not see how such a product

properly incorporates the dynamics of open strings in this background.
5In order to study explicit realization of non-abelian geometry, one can instead consider simpler con-

struction based on Melvin universes which are solvable [25].
6Factors of 2 and π are left out to prevent cluttering.
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gI = g, α′
I = α′, L1I = L1, L2,3I =

α′

L̃23

. (3.9)

Step II: ST123-duality Next, we S-dualize and then perform T-duality along the x1, x2,

and x3 directions. This gives the configuration,

0 1 2 3 4 5 6 7 8 9

D8 • • • • • • • • •
D4 • • • • •

(3.10)

where the parameters after the duality scale as

gII =
gL2L3

L1α′
II

1/2
, α′

II = gα′, L1II =
gα′

L1
, L2,3II = gL̃2,3 . (3.11)

This is the same brane configuration discussed in [27 – 29] that gives rise to non-

trivial fixed points in 4+1 dimensions precisely when the D4-brane is placed at the

singularity. The singularity in this context arises from integrating out the strings

stretching between the D4-brane and the D8-brane. It is convenient to view this

system as a decompactification limit of a type I’ theory given by separating the D8-

branes from the O8-branes. To match the harmonic function profile with what is

illustrated in figure 1, one should imagine eight D8-branes and an O8 brane to the

far left, N D8-branes at z = 0, and (8 − N) D8-branes and an O8-brane to the far

right.

Step III: 1-11 flip

The only thing which makes this description unsuitable as an effective description of

the Q-space is the small size of the period of the x1 direction. This can be rectified

by performing a 1-11 flip, which yields the configuration,

0 1 2 3 4 5 6 7 8 9

D8 • • • • • • • • •
NS5 • • • • • •

(3.12)

with parameters

gIII =
α′√g

L1

√

L̃2L̃3

, L1III =
gL̃2L̃3

L1
, α′

III = gL̃2L̃3, L2,3III = gL̃2,3 .

(3.13)

Notice that as α′ → 0, gIII goes to zero as well, while α′
III and the various length

scales associated with the world volume of the NS5-brane remain fixed. This is the

standard decoupling limit of little string theory.

An important set of light degrees of freedom in this limit are the D2-branes stretch-

ing between the NS5-brane and the D8-branes. In the limit, the D2-brane behaves

– 8 –
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effectively as a string. If the distance separating the NS5-brane and the D8/O8-brane

is of the order α′U , then the tension of this effective string is

T =
1

gIIIα′
III

3/2
α′U =

L1U

g2L̃2L̃3

, (3.14)

which remains finite as α′ → 0. These states are the analogues of “fundamental

matter” for little string theory, along the lines discussed for the case of D3-branes

in [30]. It is also the IIA reduction (along one of the dimensions transverse to the

M5-brane) of the non-critical string theory introduced in [31]. The conclusion is that

gauge theory on Q-space is a low-energy effective description of “little string theory

with flavor,” which is decoupled from gravity.

4. Low-energy effective description of the R-space

We will now describe what happens if one attempts to repeat the story for the R space.

That we do not have an explicit supergravity solution describing the R-space analogous

to (3.2) prevents us from directly inserting a D3-brane as we did in the previous section.

What we can do instead is to insert a D0-brane in the H-space, and study the low-energy

effective dynamics, while scaling the size of the torus as L1,2,3 ∼ α′/L̃1,2,3. This scaling iso-

lates the winding modes while decoupling the momentum modes as α′ → 0. Re-interpreting

the winding modes of one geometry as Kaluza-Klein excitations of some other geometry

essentially amounts to performing a T-duality.7 In fact, had the B-field been taken to

be a constant, this is precisely the approach taken in [34 – 36] to construct ordinary non-

commutative spaces as a decoupling limit.

One can easily check that D0-branes in the background of smeared NS5-branes,

0 1 2 3 4 5 6 7 8 9

NS5 • ≡ ≡ ≡ • • • • •
D0 •

(4.1)

break all supersymmetries and, hence, there will be a potential for the D0-brane to roll

toward the NS5-branes. An alternative setup is to consider a D1-brane extended along the

warped direction:

0 1 2 3 4 5 6 7 8 9

NS5 • ≡ ≡ ≡ • • • • •
D1 • •

(4.2)

This configuration is supersymmetric and static. In order to isolate the low-energy effective

dynamics on the R space, we scale our parameters as

gs =
g2
Y M4α

′

L̃1L̃2L̃3

, L123 =
α′

L̃1,2,3

, (4.3)

7One can in fact think of our construction as the generalization of [32, 33] on T
3 with non-vanishing

H-field.
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so that the volume L̃1L̃2L̃3 and the gauge coupling g2
Y M4 of the 4+1 dimensional Yang-Mills

theory are finite after T-dualizing along x1, x2, and x3 coordinates.

There is a problem with interpreting such a construction as effectively giving rise to the

R-space. The smeared NS5-brane background is still given by (2.9), but now the harmonic

function f(z), when written in terms of α′ and the variables that are kept finite in the

scaling limit, takes the form

f(z) = f0 −
NL̃1L̃2L̃3(|z| + z)

2(2π)4α′2
. (4.4)

For the R-space to be a useful effective notion, one would like f(z) to be of order 1 for a

sufficiently wide range of values of z. Clearly, this is not the case in the limit α′ → 0.

Such severe warping appears to make the R-space problematic as a low-energy effective

notion. The appearance of a strong gravitational backreaction is to be expected since we

start by shrinking the volume of the torus in the H-space, where the total flux is kept

fixed. As we shrink the torus, the energy density associated with the flux increases, giving

rise to stronger backreaction on the geometry. Such a strong gravitational backreaction is

also potentially problematic for the effective description of the Q-space considered in the

previous section. It is the combination of the fact that the probe branes can be arranged

to be localized in the warped direction, and that the amount of squeezing of the flux is

milder in the scaling relevant to the Q-space that allows for a smooth decoupling limit.

In spite of the strong warping, one could contemplate performing a duality transfor-

mation on (4.2) to attempt to identify the analogue of (3.12) for the R-space case.

Step I: T56 duality:

0 1 2 3 4 5 6 7 8 9

NS5 • ≡ ≡ ≡ • • • • •
D3 • • • •

(4.5)

gI =
gsL5L6

α′
=

g2
Y M4L5L6

L̃1L̃2L̃3

= finite, L1,2,3I =
α′

L̃1,2,3

, L5,6I = finite . (4.6)

Step II: ST123 duality: This duality transforms (4.6) to

0 1 2 3 4 5 6 7 8 9

D8 • • • • • • • • •
D6 • • • • • • •

(4.7)

with the parameters

gII =
g2
I L̃1L̃2L̃3

α′
II

3/2
, α′

II = gIα
′
I , L1,2,3II = gI L̃1,2,3 . (4.8)

This gives rise to a low-energy effective coupling for the D6-brane,

g2
Y M6 = gIIα

′3/2
II = g2

I L̃1L̃2L̃3 = finite . (4.9)

– 10 –
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In fact, this configuration is the infinite volume limit of the 6+1 dimensional gauge theory

discussed in [37]. Unlike the NS5-branes considered in the previous section, D6-branes do

not have a scaling limit that decouples the gauge dynamics from gravity. Nonetheless, it is

tempting to speculate that the R-space emerges as a low-energy effective description of this

dynamical system. Unfortunately, as the slope of the harmonic function (4.4) diverges in

the α′ → 0 limit, the range of the coordinate z for which this system is dual to an R-space

shrinks to zero size, making such an interpretation doubtful.

Had we considered instead the non-supersymmetric D0-brane configuration shown

in (4.1), the warping would cause the D0-brane to roll toward the NS5-branes in a time-scale

that gets arbitrarily short as α′ is sent to zero.

All of these problems are a consequence of generic gravitational backreaction effects

arising from quantized fluxes in a small volume. While we demonstrated the difficulty

only for the specific case of H-flux generated by the background of smeared NS5-branes, it

seems reasonable to expect that any realization of H-flux on a torus would lead to similar

difficulties.8 We are therefore propose that the R-space does not exist as a low-energy

effective notion decoupled from the stringy effects.

5. Comments on possible connections to the non-associative tori

One of the main conclusions of this article is the observation that a sensible decoupling

limit of low-energy open strings in R-space does not appear to exist. As we saw in the

previous section, the main cause of this difficulty is the strong gravitational backreaction

in the dual H-space description of the background geometry. It turns out, however, that

an intriguing non-associative geometry, similar to the one described in [21], emerges if one

naively ignores the gravitational backreaction. The fact that we are ignoring the gravita-

tional backreaction, which is necessary in order to have a consistent background for string

perturbation theory, makes the physical interpretation of this mathematical structure in

terms of string theory less clear. Nonetheless, a connection to some kind of non-associative

geometry as an effective description of R-space is sufficiently intriguing that we felt it worth

illustrating. Our hope is that this discussion can be made more transparent in the future.

5.1 Review of dual lattice formulation of non-commutative geometry

We begin the discussion by recalling the approach used in [34 – 36] to describe ordinary

non-commutative spaces. A D2-brane in a B-field background becomes a non-commutative

gauge theory in a certain scaling limit. Instead of the D2-branes in a B-field background,

however, one can also consider D0-branes in the T-dual torus of size L = α′/L̃, which also

has a non-vanishing B-field.

8Recently, a large class of solutions of the four dimensional effective field theory, where the effects of

the fluxes in compact dimensions are encoded in the superpotential, were constructed in [38]. It would be

interesting to see if any of these constructions would allow a smooth decoupling limit to be taken along the

lines discussed in this paper. To study this issue, however, it is essential to first find an explicit lift of these

solutions to a solution of supergravity in ten dimensions similar to (2.9).

– 11 –



J
H
E
P
1
2
(
2
0
0
6
)
0
2
5

a)

b)

c)

A B

C

A

B

C

x1

x2UHP

A B

Figure 2: World sheet diagram corresponding to the scattering of open string winding modes

ending on a periodic array of D-branes. Diagram a) shows the relevant disk geometry with three

punctures representing the open strings. In b) the same geometry is shown in the upper half

plane. In c) we show the space-time embedding of the saddle-point configuration for the constant

B background. The gray circles represent the lattice of D0-branes. The punctures A, B, and C are

mapped to the edges of the triangle.

Before T-dualizing, the non-commutativity manifests itself in the three-point scattering

amplitude of open string momentum modes on the D2:

ANon−comm(p, q, r)(2π)3δ3(p + q + r) = e
i
2
p1θp2AComm(p, q, r)(2π)3δ3(p + q + r) . (5.1)

From the T-dual, D0-brane perspective, this is a scattering of winding modes. The config-

uration minimizing the world sheet action,

S =
1

4πα′

∫

gijdxi ∧ ∗dxj + Bijdxi ∧ dxj , (5.2)

can be visualized as a minimal area triangle. When the world sheet is parameterized by

the upper half plane, this triangle corresponds to the configuration,

xi =
pi

2πi
log

(z

z̄

)

+
qi

2πi
log

(

z − 1

z̄ − 1

)

, z ∈ H+ (5.3)

and is a solution to the equation of motion,

∇2xi = 0, (5.4)

which is independent of the B-field since dB = 0. However, the world sheet path integral

picks up a B-dependent phase factor,

exp

[

i

4πα′

∫

Bijdxi ∧ dxj

]

= exp

[

i

2
piθ

ijqj

]

, pi =
2πmi

L̃i

, qi =
2πni

L̃i

, (5.5)
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where

θ = 2πα′B . (5.6)

This phase factor is equivalent to the flux of B through the triangle illustrated in figure 2

and allows one to define the Moyal product,

eipx ∗ eiqx = eipθq/2ei(p+q)x . (5.7)

Non-commutative gauge theory has a clean realization in string theory as the decou-

pling limit α′ → 0 with L̃i fixed. In this limit, the masses of open string winding modes

remain finite. Interpreting the winding modes as the momentum modes of the T-dual pic-

ture, one recovers precisely the dynamics of decoupled open strings in the Seiberg-Witten

picture [12]. When the background B-field is scaled appropriately, the non-commutativity

parameter as seen by the momentum modes in the dual picture also remains finite. This

is how one reconstructs the effective physics of non-commutative gauge theories from the

winding modes. Of course, in the case of a constant B-field background, one can T-dualize

explicitly and obtain the same non-commutative field theory from either of the two ap-

proaches. In the context of the H/R duality, only one approach is available so we use the

one to study the other.

5.2 Triple T-duality: H ↔ R

Several new feature arise when the H-field is non-vanishing. First, we must consider a

three dimensional array of D-branes localized inside the H-space. The open string can now

wind in three independent directions.

For the non-interacting strings, the mass of the wound strings are unaffected by the

H-field. This is because one of the extended directions of a non-interacting string is the

time component, whereas the B-field has no non-vanishing time-like component. Since the

spectrum of the non-interacting wound strings are unaffected by the H-field, one concludes

that the geometry of the theory must be encoded in the interaction terms.

When a string wound along (m1,m2,m3) joins with a string wound along (n1, n2, n3) to

become a string which winds along (m1 +n1,m2 +n2,m3 +n3), one expects to find a world

sheet configuration which forms a triangle in a three dimensional lattice, as illustrated in

figure 3.

If one naively follows the prescription of attributing the flux of B-field through this

triangle as a phase, one obtains an expression for a generalization of the Moyal product.

Letting

~x = (L1m1, L2m2 + L3m3)(1 − σ1) + (L1n1, L2n2, L3, n3)σ2 (5.8)

for 0 < σ1, σ2 < 1 and σ1 + σ2 < 1, one finds9

π(u(m,n)) ≡ e
1

4πα′

R

Bijdxi∧dxj

= e−2πiN((2m1+n1)/6+c)(m2n3−m3n2) . (5.9)

The parameter c corresponds to the freedom to move the origin of the D0-brane lattice

along x1, but will not matter in most of the discussion. One can use this phase to define

a new product,

9We adopt a notation similar to the one in [21] to facilitate comparison of our algebra with theirs.
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(m1,m2,m3)

(n1, n2, n3)

(m1 + n1,m2 + n2,m3 + n3)

x2

x3

x1
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Figure 3: Minimal area triangle configuration for the open string winding modes ending on a three

dimensional array of D-branes. The lattice points are suppressed for clarity.

eipx ∗ eiqx = π(u(m,n))ei(p+q)x, pi =
2πmi

L̃i

, qi =
2πni

L̃i

, (5.10)

which can also be written in the form,

f(x) ∗ g(x) = e
− 1

(2π)2
NL̃1L̃2L̃3

“

2∂x1+∂y1
6

+C
”

(∂x2∂y3−∂x3∂y2 )
f(x)g(y)

∣

∣

∣

∣

x=y

, (5.11)

which acts on functions f(x) and g(x) in the R-space.10

An interesting novel feature of this product is that it is non-associative. Indeed, one

can easily confirm that

(eipx ∗ eiqx) ∗ eirx = π(u(m,n))π(u(m + n, l))ei(p+q+r)x (5.12)

corresponding to the diagram on the left in figure 4, and

eipx ∗ (eiqx ∗ eirx) = π(u(m,n + l))π(αm(u(n, l)))ei(p+q+r)x, (5.13)

corresponding to the diagram on the right in figure 4, are not equal since

φ(m,n, l) ≡ π(u(m,n + l))π(αmu(n, l))

π(u(m,n))π(u(m + n, l))
= e

iπN
3

(m·n×l) 6= 1 . (5.14)

Here,

αmπ(u(n, l)) = e−2πiN((2n1+l1)/6+m/2+c)(n2l3−n3l2) (5.15)

10We are using the fact that points on R-space can be viewed as an ordinary T
3 when interactions are

ignored.
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C

(A ∗ B) ∗ C

A

B

C

A ∗ (B ∗ C)
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x2

x3
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� � � � � � � �
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Figure 4: Two different triangulations of quadrilateral representing the two different orders of

multiplying the open strings A, B and C. The difference of B-flux through the two triangulations

is equivalent to the volume integral of the H-flux through the tetrahedron, and is a measure of

non-associativity of the product (5.10).

accounts for the fact that ~n +~l does not start at the tail of ~m.11

The non-associativity can be understood in terms of two different ways of triangulating

a quadrilateral, illustrated in figure 4. The difference in phases is the surface integral of B

over the tetrahedron, which by Stokes theorem is equivalent to the volume integral of H.

This is algebra appears to have the same form as the twisted crossed product considered

in [21]. (Compare with equation (2.3) of [21]). This type of non-associative algebra has

also appeared in other contexts [39] as well as in attempts to generalize Moyal algebra to

higher dimensions in the context of branes12 [40].

The picture illustrated in figure 4 also clarifies the fact that the non-associative prod-

uct (5.10) is cyclic, i.e. the associator is a total derivative. In other words, we have

∫

d3x eipx ∗ (eiqx ∗ eirx) =

∫

d3x (eipx ∗ eiqx) ∗ eirx = (2π)3δ3(p + q + r) . (5.16)

This is because the conservation of momentum in the R-space constrains the tetrahedron

to collapse into a triangle. Cyclicity is a useful notion in defining field theories using fields

whose algebra is non-associative [41]. This means that one can unambiguously write an

action whose interaction terms are at most cubic, such as φ3 theory.13

The non-associative algebra being discussed here comes about somewhat differently

from seemingly similar setup discussed in [43, 44]. These authors considered D3-branes in

a non-trivial H-field background. Therefore, their program should be thought of as the

11If N is even, however, the shift in the phase is a multiple of 2π and does not affect the result. The

simplicity of even N is related to the fact that Morita equivalence Θ → Θ+1 is an isomorphism which acts

non-trivially, while Θ → Θ + 2 acts trivially.
12We thank Y. Matsuo for telling us about their on-going work.
13A different approach for defining gauge theories with non-associative fields can be found in [42].
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study of D3-branes in the H-space. What we consider instead is D3-branes in R space, or

equivalently, D0-branes in H-space. The basic setup is therefore distinct, although certain

aspects of the vertex operator algebra are inevitably similar. It should also be noted that

a D3 in a presence of an H-field acquires an induced magnetic charge [45] via the Hanany-

Witten mechanism [46, 47]. Since the H-space is compact, additional steps are needed to

cancel this induced charge when constructing a consistent string theory background.

The algebra (5.10) is extremely similar in structure to the Busby-Smith algebra de-

scribed in section 3 of [21]. At the present time, it is not completely clear how one should

properly interpret the mathematical formalism described in [21] in physical terms using

string theory. According to the authors of [21], the framework described in that paper

does not directly concern D-branes (other than the fact that their charges are encoded by

the relevant K-theory) and should be viewed as a statement regarding the closed strings.

The fact that we identify similar algebraic structure in the lattice of dual branes appears to

suggest that these structures are more natural in the context of open strings dynamics. It

is also worth noting that [21] also describes the Q-space by “a continuous field of stabilized

non-commutative tori” that is reminiscent of the description of Q-space in section 3, which

is definitely an open string construction. It is an important open problem to clarify the

proper physical interpretation of [21] and to settle the question of the relevance of the open

v.s. closed strings.14 What is needed is the analogue of [34].

Some of this discussion, however, is purely academic in that the story of the tetrahedron

relied entirely on the triangular world sheet. Such a world sheet is a solution to the world

sheet equation of motion (5.4) when H = 0, but in the case of non-vanishing H-field, (5.4)

is corrected to

d ∗ dxi − Hijkdxj ∧ dxk = 0 . (5.17)

Interestingly, this equation of motion originally arose in an attempt to describe vortices in

a superfluid [48, 49] and has resurfaced in various contexts [50 – 53]. The triangular world

sheet (5.3) is not solved by this equation. It is not clear if there exist analytic solutions to

this equation, nor is it clear how to use it to properly modify the naive product described

above.

The fact that the non-associative product structure (5.10) is difficult to realize in a fully

consistent treatment of critical string theory may be another indication that R-space does

not exist as a low-energy effective notion of critical string theory. As a possible alternative,

let us point out that there does exist a topological sigma model, known as the Poisson-WZ

sigma model [54], which nicely reproduces our product. The action of the Poisson-WZ

sigma model is given by

S =

∫

ηi ∧ dxi +
2π

L1L2L3
Nx1dx2dx3, (5.18)

14This need not be a mutually exclusive statement since branes can be transmuted into fluxes and vice

versa. Nonetheless, it may turn out that the brane description is the most natural framework for providing

a physical interpretation of [21].
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where ηi is a world sheet one-form. Because of the invariance of the action under the gauge

transformation,

η → η + dλ, (5.19)

one should consider the gauge fixed action,

S =

∫

ηi ∧ dxi + ηi ∧ ∗dγi +
2π

L1L2L3
Nx1dx2dx3 . (5.20)

The fields γ and η constrain x to be harmonic, making (5.3) the unique solution given

the boundary conditions. The Poisson-WZ model appears to play a role very similar

to the Poisson sigma model [55, 56] whose boundary correlation functions were shown

in [57] to elegantly reproduce the deformation quantization formula of Kontsevich [58]. A

sophisticated interplay of ideas involving the Poisson sigma model and the Poisson-WZ

model have been discussed, for example, in [59 – 61]. It is quite likely that the algebraic

structure (5.10) and its connection to [62] will turn out to be most transparent in the context

of the open Poisson-WZ sigma model winding modes in a manner closely resembling the

discussion of section 5.2.

Unfortunately, Poisson-WZ sigma model, like the Poisson sigma model, are too general

a construct to embed consistently in critical string theory. Not all consistent Kontsevich

∗-deformations are expected to be realizable as a decoupling limit of a consistent critical

string construction. The absence of strong conceptual connection between decoupled open

strings and the Poisson sigma model was also emphasized in [63]. This is in line with the

our empirical observation that the consistent decoupling limit of effective field theory on

R-space does not appear to exist.

6. Concluding remarks

In this article, we investigated the possible low-energy effective description of non-geometric

compactifications discussed recently in the context of novel compactifications [1 – 3, 7]. We

followed the guiding principle that generalized notions of geometry should have a concrete

meaning when the intrinsic non-locality associated with the string scale is decoupled from

scale relevant to geometry.

There are two examples of non-geometric compactifications that arise naturally in

the context of T-duals of T 3 with H-flux. In the case of Q-space, we found that the

novel non-geometric features can be understood in terms of a non-commutative geometry

compactified using a Morita duality. This non-commutative gauge theory has a singular

moduli-space that is resolved by integrating in certain degrees of freedom. All of these

degrees of freedom can be embedded in a UV complete theory given by little string theory

coupled to flavor matter, but decoupled from gravity.

In the case of the R-space, we did not find a sensible decoupling limit. It is entirely pos-

sible that a triple T-duality of T 3 with H-flux does not admit a low-energy effective descrip-

tion. Nonetheless, we did encounter certain features suggestive of a non-associative gen-

eralization of non-commutative geometry. That such a generalization to non-commutative

geometry should arise in the R-space which is seemingly more “non-geometric” than the
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Q-space is sensible, and it would be extremely interesting if this connection can be made

more precise.

The primary obstacle to understanding the non-associative structure from critical

string theory is the strong gravitational back reaction. This problem appears to be evaded

in the Poisson-WZ sigma model, which is a topological theory similar to the Poisson sigma

model. Ultimately, we may find that R-space has a natural interpretation in terms of non-

associative deformation of space-time only in the framework the topological sigma model

and that this structure cannot be embedded into critical string theory.
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